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Interfaces with superroughness
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We undertake an extensive analytical study of the- (3-dimensional discrete superrough growth pro-
cesses, which are the growth processes withgtbbal roughness exponent larger than 1. First, we obtain the
exact expressions of the global interfacial widtiiL,t), the local interfacial width relative to the substrate
orientationw(l,t), and the local interfacial width relative to the local interfacial orientatigfl ,t), in terms
of the equal-time height difference correlation functi@@ ,t). These relations are exact and can be applied
to all the (1+1)-dimensional discrete growth processes with periodic boundary conditions. Moreover, we
show that thdocal roughness exponent must be smaller than 1 for theX)l-dimensional superrough growth
processes withw,(I,t) retaining the same anomalous dynamic scaling behaviokg(k$); in contrast, the
local roughness exponent must be equal to 1 for those wijifi,t) retrieving the ordinary dynamic scaling
behaviors.

PACS numbses): 05.40—-a, 47.55.Mh, 64.60.Ht, 68.35.Ct

The kinetic roughening phenomenon of growing inter- For one decade, people have generally believed that the
faces[1-3] has brought about much interest for its wide- kinetically roughened interfaces are self-affine; namely, the
spread applications. Recently, much attention has been fdecal interfacial width and the equal-time height difference
cused on the superrough growth processes, which are tlwrrelation function have the same scaling behavior as the
growth processes with the global roughness expogent.  global interfacial width, which has been known to obey the
Among all the experimentally accessible quantities, one obrdinary dynamic scaling ansatz. Therefore, the numerical
the most informative quantities is the equal-time height dif-and experimental establishment of the existence of anoma-
ference correlation functio®(r,t). Here,G(r,t) is defined lous dynamic scaling behaviors is an important breakthrough
as in the study of interfacial kinetic roughening phenomena.
Although many numerical works have been done, rigorous

G(r,t)=((h(Xg,t) —h(Xo+r,1))?), (1) analytical treatments are still rare. This motivates us to un-

dertake an extensive analytical treatment on the

with h(x,t) denoting the interface height from a flat substrate(1+ 1)-dimensional discrete superrough growth processes
at positionx and timet, (-), denoting the spatial average with periodic boundary conditions. We first want to obtain
over the whole system of sie, and the overbar denoting the exact expressions of the global interfacial widtfL,t),
the statistical average, throughout the paper. For various sthe local interfacial width relative to the substrate orientation
perrough growth processes with either annealed or quenchew(l,t), and the local interfacial width relative to the local
noises, the equal-time height difference correlation functiorinterfacial orientationw,(l,t), in terms of the equal-time
G(r,t), in the regime where the correlation lenggh-t*? height difference correlation functio®(r,t). Then, we will
<L, has been both numericali—7] and experimentally employ the obtained relations to explore the intriguing inter-
[8—10] observed to display theanomalous dynamic scaling facial behaviors of the (% 1)-dimensional superrough

behaviors: growth processes in the intermediate time regime.
Let us consider a one-dimensional interface represented
G(r,t)=r2xf(r/t'?) (20 by a set of height variableb(x,t) on a linear latticex
=1,2,...L with periodic boundary conditions. The global
with the scaling functiorf(y) obeying interfacial widthw(L,t) is defined as
—2k
tyy{ Y Tory<h @ WAL, H=((h(xD) ~(h(x, D)), @)
y 2 fory>1.

which describes the interface height fluctuation relative to
Here, the two independent exponegtsndz are known as the average interface height over the whole system oflsize
the global roughness exponemind thedynamic exponent In contrast, the local interfacial widtw(l,t) is defined as
respectively. Note that for the ordinary dynamic scaling be-
havior [11] displayed by the truly self-affine interfaces, the w2(1,0)=(((h(x,t) = (h(x,1)))?) ) (5)
scaling function goes to a constant quickly in the snyall
limit. Thus, the appearance of the third independent nonzerwith (- ), denoting, throughout the paper, the spatial average
exponentk, i.e., the anomalous temporal dependence in thealculated within a local window of side The local interfa-
intermediate time regime <t*?<L, is the signature of cial width w(l,t), obtained by averaging over many local
anomalous dynamic scaling behaviors. windows of the same sidealong thex axis and then over the
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randomness, describes the interface height fluctuation rela
tive to the average interface height within the local window
of sizel (< the system siz&). To extract out the effect of
local interfacial orientational instability on interfacial rough-
ening, we have proposdd?2] a definition of the local inter-
facial widthw,(I,t) as follows:

~w(L,t)

wW2(L,t) = (h(x,H) = (x,1)?))0, (6)

which describes the interface height fluctuation relative to
the local interfacial orientation within a local window of size !

| (< the system sizé&) . Here, h,(x,t) denotes the heights,
measured from the flat substrate, of a straight line segmen L
obtained by least squares fit to the interfacial configuration in '
the local window of sizé at a given timet. Quantitatively,

interface height

lattice site x

hy(x,t) = (h(x,t) )+ (X={x)1)s(l,1) (7)
) FIG. 1. A snapshot of typical (1)-dimensional superrough
with interface configuration in a system of size The solid curve rep-
12 resents the interface heighitgx,t). The dot-dashed straight line
s(1,t) = 77— {(X={xX))h(x,t) ), (8) segment represenis(x,t) obtained by least squares fit to the inter-
(1°=1) facial configuration within a local window of size(< the system
sizel).

which is the slope of the straight line segmér(tx,t) in the
local window of size at a given time of a given interfacial
configuration. Note that, throughout the paper, the term “lo-

cal interfacial orientation” quantitatively refers ts(l,t). s(I ,t) from many local windows of the same sizalong the
Consequently, the original local width(l,t) and the modi- X axis over the whole system of sizeand then taking the
fied local widthw,(1,t) have the relation as follows: statistical average. Figure 1 gives a pictorial explanation
about the above related quantities.
(12-1) — Next, we want to first obtain the explicit relation between

w2(1,t) —wA(l,t)=

12 (S*(1LO)L. (9 the correlation functionG(r,t), and the average magnitude

of the local interfacial orientation(s?(l,t)), 2. From Eq.
Here, (s%(I,t)), is obtained by first taking the average of (8),

— 144
<32(|,t)>L=m(((X—<X)|)h(x,t))|2)L
144 (1o [T -1 1 %01 1
:(|2—1)2{Ex2_1{|_ 2 (X'_XO_T)h(X’,t) {I— Z (x”—xo—7>h(x”,t)J
144 L xptl-1 -1 2
_ r_ R h /, 2
T ngo (X Xo~ ) ML
288 L Xptl—=2 xg+I-1 -1 —1
D2 2 vy (X ror T)(" o~ T)““‘ OROED. a0

By using the properties of periodic boundary conditions, welt demands much more effort to calculate the second term,
can easily obtain the first term, denoted Ayin the right-  denoted byB, in the rhs of Eq(10). First, due to the trans-

hand side(rhs) of Eq. (10) lational invariance of the system, the spatial average and the
statistical average are interchangeable. Then, by using the
A m (11) techljlque of change of variables, we can rewrite it as fol-
[(12—1) lows:
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Xo+!—2 xg+I—-1-x'

288 -1
B ( :I.)ZLI2 onl XZXO 2 (X T T)
X| X" +r—=xXo— _T)h(X’,t)h(X'H,t)- (12

Moreover, the periodic boundary conditions give the follow-

ing relation:

Xg+!—2 xg+I—=1-x’

ZEE

Xo= 1x—x

g(x’",Xo)g(X" +r,Xo)

x/

SRS

17=1 xo=x'+r+1-1

9(x",X0)g(x" +1,%g) (13)

-z

for any functiong. Thus, by employing Eq(13), we obtain

o7
X' =X~ -

-1
X x’+r—xo—7)h(x’,t)h(x'+r,t)

-1 X

>

!
Xo=X'+r+1-1

L
288
(12—1)2LI12 El =1

3,00

R 1)2|

(I-r?-1
X(T—r )(h(x’,t)h(x’+r,t)),_. (14
We then substitute Ed1) into Eq.(14) and obtain
_ / 2 _
|(|2 < ( >L 2(|2 1) 2 (
2r(r+1)
X “T_l G(r,t). (15

From Eqgs.(11) and(15), we thus obtain the relation between
the average magnitude of the local interfacial orientation,

(s?(1,1)), ¥2, and the correlation functionG(r,t), as fol-
lows:

-1

2(—)

2r(r+ )_1
(1?-1)

(s%(l t)>L=i
’ 12(12—1) ¢

The local interfacial orientatiors(l,t), definitely has close

relations with any physical quantities related to interface™

slopes. For example, the step sitke nearest neighbor in-
terface height differengeof the interface[ G(1;1)]?, is ex-
actly equal to(s?(2,t)), Y2 This equality can be easily ob-
tained from Eq{(16). In addition, the slope-slope correlation
function (Vh(xg,t)Vh(xp+r,t)),, proposed in Refl13], is
also intimately related tgs?(l,t)), /2 which can be easily
seen from Eqs(l) and (16).

Subsequently, from Eqgl), (4), and(5), we can easily
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wa(L,t)= E G(r,1), (17)

and the relation between the local interfacial widaf{],t),
and the correlation functiorG(r,t), as

|t=

|\J|H

Z (1=1)G(r,1). (18)

Then, by substituting Eq$16) and(18) into Eq.(9), we also
obtain the expression ofi,(l,t), the local interfacial width
relative to the local interfacial orientation, in terms of the
correlation functionG(r,t) as follows:

2 ' 2 r(r+1)
—Zer(l—r){l—(lz

wa(l,t)= G(r,t). (19

These relations, obtained above, are exact and thus can be
applied to all the (¥ 1)-dimensional discrete growth pro-
cesses with periodic boundary conditions, no matter whether
the interface is superrough or not.

In the following, we want to employ the above obtained
relations to study the asymptotic interfacial behaviors of the
(1+1)-dimensional superrough growth processes in the in-
termediate and late time regimes. From E@.and(3), we

see thatG(r,t)~r2"'t2<'Z with the local roughness expo-
nenty’=x— , in the regimer <t*?<L. On the other hand,

G(r,t)~r2X'L2< after the correlation length(~t?)
reaches the system size Thus, the saturated global interfa-
cial width wg,(L)=w(L,t>L%)~LXX"*%) From a geo-
metrical argumen{14], it has been shown that the local
roughness exponent’<1. Consequently, for the systems
with the correlation functionG(r,t) obeying the ordinary
dynamic scaling ansatz, i.e<=0, the global roughness ex-
ponenty must be smaller than or equal to 1. Thus, the su-
perrough growth processéshere y>1) must be accompa-
nied by the anomalous dynamic scaling behavior& (f,t).
However, for those witlG(r,t) obeying the anomalous dy-
namic scaling ansatz, i.ex,# 0, the global roughness expo-
nenty could be larger or smaller than one. Thus, we see that
the anomalous dynamic scaling behavior&gf,t) are nec-
essary but not sufficient conditions for the superroughness of
the interfaces. It has been known in the literature that the
local interfacial widthw(l,t) of the superrough growth pro-
cesses displays the same anomalous dynamic scaling behav-
iors as the correlation functio®(r,t). Namely, in the re-
gime where the correlation Iengthg’~t1’z<L w(l,t)
IXf(1/tY%) with the scaling functionf(y)~y~* wheny
<1 andf(y)~y X wheny>1. This result can also be easily
seen from Eqs(2) (3), and(18). Note that the nonsaturation
of the scaling functionf(1/t¥?), in the regimel <t*?<L,
gives rise to the substantial difference between global and
local scaling behaviors. That is, the local interfacial width
w(l,t)~1X" at a fixed time slice, in the regime?>1; while
the global interfacial widthw(L,t)~LX, in the regimet'?
>L. Since the exponent# 0 in the superrough growth pro-

obtain the relation between the global interfacial width,cesses, the local roughness expongntwhich describes the

w(L,t), and the correlation functior(r,t), as

spatial scaling behavior of the local interfacial widttl,t),
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has a different value from the global roughness exporent of local grooves or spikes is usually associated with the spa-
which describes the spatial scaling behavior of the globatial multiscaling behaviors of interfaces, we thus conjecture
interfacial widthw(L,t). One has to take good care of this that the interfaces of thé€l+1)-dimensional superrough
distinct feature, which is very crucial for correctly analyzing growth processes with the local roughness exponért1
and interpreting the experimental data. display the spatial multiscaling behaviors. In contrast, for the
Next, we substitute’s(r,t)~r2X't2“’z into Eq. (16) and  (1+1)-dimensional superrough growth processes with
obtain that the average magnitude of the local interfacial ori=1, w,(l,t) either retrieves the ordinary dynamic scaling
entation has the anomalous temporal dependencéehaviors or has a much weakened temporal dependence
(s2(1,1)) Y2~1X"t¥'7 in the regimd <tY?<L. Note that, for ~ (i.e., the lower order thatt’?) in the intermediate time re-
the systems obeying the ordinary dynamic scaling ansatz, thgime | <t*?<L. This result indicates that local interfacial
local interfacial orientation saturates quickly after the growthorientational instability is the dominant mechanism causing
time reaching the regime”?>1. Here, we explicitly verify, the anomalous temporal dependencev(ff,t) and, thus, the
in (1+1) dimensions, the usual conjectuf®] that all the |ocal interface of this class can be viewed as a normal self-
superrough growth processes are associated with local intexffine interface but gradually tilted as the time increases. We
facial orientational instability towards the creation of largetpys conjecture that the interfaces of tie-1)-dimensional

slopes. Since all the superrough growth processes are assQperrough growth processes with the local roughness expo-
ciated with local interfacial orientational instability, it is in- nenty’ =1 display spatial single scaling behaviors.

teresting to find out whether local interfacial orientational In conclusion, an extensive analytical study of the

; ‘EE+ 1)-dimensional discrete superrough growth processes is
of the local interfacial widthw(1,t) ~1Y't"%, in the interme-  yndertaken. We obtain the exact expressions of the global
diate time regime <t'“<L. We then substitute the asymp- interfacial widthw(L,t), the local interfacial width relative
totics of the correlation functiol&(r,t)~r2X't?'2 in the  to the substrate orientation(l,t), and the local interfacial
intermediate time regime<t'?<L, into Eq.(19) and obtain  width relative to the local interfacial orientatiom,(l,t), in

very intriguing results:(1) for the growth processes with terms of the equal-time height difference correlation func-

x' <1, tions G(r,t). These relations are exact and can be applied to
1 all the (1+1)-dimensional discrete growth processes with

2 2 rr+0D1 50l 2wz periodic boundary conditions, no matter whether the inter-

Wl H)~ 12 Z’l (I=n|1- (12-1) r t face is superrough or not. Then we show that the anomalous

dynamic scaling behaviors @(r,t) are necessary but not
1— ' ) sufficient conditions for the superroughndssere the glo-
12x't2/z  (20)  bal roughness exponent>1) of the interfaces. Moreover,
we show that the local roughness expongfit must be
smaller than 1 for the (%1)-dimensional superrough
growth processes withv,(I,t) retaining the same anomalous
dynamic scaling behaviors asg(l,t); in contrast, the local
roughness exponent’ must be equal to 1 for those with

w,(I,t) retrieving the ordinary dynamic scaling behaviors.
rz] t2xlz=, We then conjecture that the former class is associated with

spatial multiscaling behaviors and the latter class is associ-
ated with spatial single scaling behaviors. It will be very
interesting for future study to find out whether this conjec-
ture is valid.

T 2x DX 1) (X +2)

which indicatesw,(l,t) retaining the same anomalous tem-
poral dependence as the original local widkf{l,t); (2)
while, for the growth processes wif{ff =1,

21 0= 21 g r0tD
w2(1,1) |2|r21(| |1 TE=t

which indicates the leading asymptotic term of the correla
tion function G(r,t), r?t?</?, having no contribution to the
asymptotic behaviors ot/ﬁ(l,t). The work of N.-N. Pang was supported in part by the

For the (1+1)-dimensional superrough growth processesNational Science Council of the Republic of China under
with x’' <1, this robust anomalous temporal dependence oGrant No. NSC 89-2112-M-002-012. The work of W.-J.
wy(1,t) implies that the local interface not only tilts, due to Tzeng was supported in part by the National Science Council
local interfacial orientational instability, but also forms local of the Republic of China under Grant No. NSC 89-2112-M-
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